Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding
نویسندگان
چکیده
Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages' pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages' core and low non-specific binding to the cages' outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage's core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of currently available approaches and provides a new route to design tailored and well-controlled hybrid nanoparticles.
منابع مشابه
Engineered clathrin nanoreactors provide tunable control over gold nanoparticle synthesis and clustering
The use of biomolecules to direct nanomaterial synthesis has been an area of growing interest due to the complexity of structures that can be achieved in naturally occurring systems. We previously reported the functionalization of self-assembled clathrin protein cages to enable synthesis of nanoparticles from a range of inorganic materials. Here, we investigate the ability of this engineered bi...
متن کاملPolymer control of ligand display on gold nanoparticles for multimodal switchable cell targeting.
The function of cell-specific ligands on gold nanoparticles can be selectively gated by the action of co-grafted thermosensitive polymers. Below the LCST the responsive chain-extended polymers prevent cell-surface receptors from accessing the affinity ligands while above the LCST, the polymers collapse exposing the ligands and allowing binding to receptors, which in turn promotes cell internali...
متن کاملAn engineered DNA-binding protein self-assembles metallic nanostructures.
Biological fabrication routes can provide a way to overcome the limitations presented by current chemistry-based nanoparticle arrangement and assembly methods. Many recent assembly strategies utilize DNA as the templating molecule by patterning gold nanoparticles on DNA through chemical conjugation via, for example, a sulfhydryl bond. Reliance upon this chemistry, however, limits applications b...
متن کاملEngineered protein cages for nanomaterial synthesis.
Self-assembled particles of genetically engineered human L subunit ferritin expressing a silver-binding peptide were used as nanocontainers for the synthesis of silver nanoparticles. The inner cavity of the self-assembled protein cage displays a dodecapeptide that is capable of reducing silver ions to metallic silver. This chimeric protein cage when incubated in the presence of silver nitrate e...
متن کاملCharacterization of dsDNA Binding Protein SlyA for Nanostructure Assembly
and Introduction: This project explored the suitability of the Salmonella typhimurium deoxyribonucleic acid (DNA)-binding protein SlyA (17kDa) for use in the self-assembly of nanoscale inorganics on a DNA scaffold. Self-assembly techniques are attractive because they manufacture structures from the bottom-up. DNA is a potential scaffold for nanostructures because it is stable at room temperatur...
متن کامل